This article is freely available to all

Article Abstract

Although selective serotonin reuptake inhibitors (SSRIs) block serotonin (5-HT) reuptake rapidly, their therapeutic action is delayed. The increase in synaptic 5-HT activates feedback mechanisms mediated by 5-HT1A (cell body) and 5-HT1B (terminal) autoreceptors, which, respectively, reduce the firing in 5-HT neurons and decrease the amount of 5-HT released per action potential resulting in attenuated 5-HT neurotransmission. Long-term treatment desensitizes the inhibitory 5-HT1 autoreceptors, and 5-HT neurotransmission is enhanced. The time course of these events is similar to the delay of clinical action. The addition of pindolol, which blocks 5-HT1A receptors, to SSRI treatment decouples the feedback inhibition of 5-HT neuron firing and accelerates and enhances the antidepressant response. The neuronal circuitry of the 5-HT and norepinephrine (NE) systems and their connections to forebrain areas believed to be involved in depression has been dissected. The firing of 5-HT neurons in the raphe nuclei is driven, at least partly, by α1-adrenoceptor-mediated excitatory inputs from NE neurons. Inhibitory α2-adrenoceptors on the NE neuroterminals form part of a feedback control mechanism. Mirtazapine, an antagonist at α2-adrenoceptors, does not enhance 5-HT neurotransmission directly but disinhibits the NE activation of 5-HT neurons and thereby increases 5-HT neurotransmission by a mechanism that does not require a time-dependent desensitization of receptors. These neurobiological phenomena may underlie the apparently faster onset of action of mirtazapine compared with the SSRIs.